Search results for "Phosphatidic acid"

showing 10 items of 39 documents

The Role of Phospholipase D and MAPK Signaling Cascades in the Adaption of Lichen Microalgae to Desiccation: Changes in Membrane Lipids and Phosphopr…

2016

Classically, lichen phycobionts are described as poikilohydric organisms able to undergo desiccation due to the constitutive presence of molecular protection mechanisms. However, little is known about the induction of cellular responses in lichen phycobionts during drying. The analysis of the lipid composition of the desiccated lichen microalga Asterochloris erici revealed the unusual accumulation of highly polar lipids (oligogalactolipids and phosphatidylinositol), which prevents the fusion of membranes during stress, but also the active degradation of cone-shaped lipids (monogalactosyldiacylglycerol and phosphatidylethanolamine) to stabilize membranes in desiccated cells. The level of pho…

0106 biological sciences0301 basic medicineMAPK/ERK pathwayLichensPhysiologyMAP Kinase Signaling SystemMembrane lipidsPlant ScienceBiology01 natural sciencesDesiccation toleranceDephosphorylation03 medical and health scienceschemistry.chemical_compoundMembrane LipidsChlorophytaOsmotic PressureMicroalgaePhospholipase DPhosphorylationProtein kinase ADehydrationPhospholipase DKinaseCell BiologyGeneral MedicinePhosphatidic acidPhosphoproteinsAdaptation Physiological030104 developmental biologychemistryBiochemistrylipids (amino acids peptides and proteins)010606 plant biology & botanyPlantcell physiology
researchProduct

Phospholipase activities associated with the tonoplast from Acer pseudoplatanus cells: identification of a phospholipase A1 activity

1995

In higher plants, the lipolytic enzymes and their physiological functions are not well characterized [1]. Most reports demonstrated that phospholipid catabolism in plants is achieved by the concerted actions of membrane-bound enzymes including phospholipase D, phosphatidate phosphatase, lipolytic acyl hydrolases and lipoxygenases [1,2]. With the exception of the phospholipase D, the literature on plant phospholipases is still very limited. We previously reported that tonoplast from Acer pseudoplatanus cells contains small amounts of phosphatidc acid and lysophospholipids, which were produced together with free fatty acids, particularly after addition of Ca2+[3]. These data suggested the pos…

0301 basic medicine0106 biological sciencesCations DivalentOctoxynol[SDV]Life Sciences [q-bio]BiophysicsVacuolePhospholipase01 natural sciencesBiochemistryPhospholipases ATrees03 medical and health scienceschemistry.chemical_compoundPhospholipase A1Phospholipase A1Phospholipase DCells CulturedComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesPhospholipase AbiologyChemistryPhospholipase DPhosphatidic acidCell BiologyHydrogen-Ion ConcentrationAcer pseudoplatanusPhosphatidate phosphatasebiology.organism_classificationPhospholipases A1[SDV] Life Sciences [q-bio](Acer pseudoplatanus)030104 developmental biologyBiochemistryVacuolesCalciumTonoplast010606 plant biology & botanyBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Simultaneous lipidomic and transcriptomic profiling in mouse brain punches of acute epileptic seizure model compared to controls

2018

In this study, we report the development of a dual extraction protocol for RNA and lipids, including phospholipids, endocannabinoids, and arachidonic acid, at high spatial resolution, e.g., brain punches obtained from whole frozen brains corresponding to four brain subregions: dorsal hippocampus, ventral hippocampus, basolateral amygdala, and hypothalamus. This extraction method combined with LC/multiple reaction monitoring for lipid quantification and quantitative PCR for RNA investigation allows lipidomic and transcriptomic profiling from submilligram amounts of tissue, thus benefiting the time and animal costs for analysis and the data reliability due to prevention of biological variabil…

0301 basic medicineBiochemistryTranscriptomechemistry.chemical_compoundEpilepsyMice0302 clinical medicineEndocrinologyTEMPORAL-LOBE EPILEPSYResearch Articlesmass spectrometrymessenger ribonucleic acidKainic AcidBrainNEUROLOGICAL DISORDERSQUANTITATIVE-ANALYSISEndocannabinoid systemLipidsCell biologyReal-time polymerase chain reactionmedicine.anatomical_structureAcute DiseaseArachidonic acidEpileptic seizuremedicine.symptomACID-INDUCED SEIZURESQD415-436BiologyMEMBRANE PHOSPHOLIPIDSENDOCANNABINOID SYSTEM03 medical and health sciencesCYTOPLASMIC PHOSPHOLIPASE A(2)SeizuresmedicineAnimalsendocannabinoidsphospholipidsGene Expression ProfilingRNACell BiologyMASS-SPECTROMETRYmedicine.diseaseDisease Models Animal030104 developmental biologychemistrynervous systemepilepsyLYSOPHOSPHATIDIC ACID030217 neurology & neurosurgeryTERT-BUTYL ETHERBasolateral amygdala
researchProduct

Protective Role for LPA3 in Cardiac Hypertrophy Induced by Myocardial Infarction but Not by Isoproterenol

2017

Background: We previously reported that lysophosphatidic acid (LPA) promoted cardiomyocyte hypertrophy in vitro via one of its G protein-coupled receptor subtypes, LPA3. In this study, we examined the role of LPA3 in cardiac hypertrophy induced by isoproterenol (ISO) and myocardial infarction. Methods: In vitro, neonatal rat cardiomyocytes (NRCMs) were subjected to LPA3 knocked-down, or pretreated with a β-adrenergic receptor (β-AR) antagonist (propranolol) before LPA/ISO treatment. Cardiomyocyte size and hypertrophic gene (ANP, BNP) mRNA levels were determined. In vivo, LPA3-/- and wild-type mice were implanted subcutaneously with an osmotic mini-pump containing ISO or vehicle for 2 weeks;…

0301 basic medicineCardiac function curvemedicine.medical_specialtyPhysiologyIschemiaInfarctionPropranolol030204 cardiovascular system & hematologylcsh:PhysiologyMuscle hypertrophy03 medical and health scienceschemistry.chemical_compound0302 clinical medicineIn vivoPhysiology (medical)Internal medicineLysophosphatidic acidmedicineMyocardial infarctionOriginal ResearchMIlcsh:QP1-981business.industryisoproterenolLPA3medicine.disease030104 developmental biologyEndocrinologychemistrybusinesshypertrophylysophosphatidic acidmedicine.drugFrontiers in Physiology
researchProduct

Effects of the LPA1 Receptor Deficiency and Stress on the Hippocampal LPA Species in Mice

2019

Lysophosphatidic acid (LPA) is an important bioactive lipid species that functions in intracellular signaling through six characterized G protein-coupled receptors (LPA1-6). Among these receptors, LPA1 is a strong candidate to mediate the central effects of LPA on emotion and may be involved in promoting normal emotional behaviors. Alterations in this receptor may induce vulnerability to stress and predispose an individual to a psychopathological disease. In fact, mice lacking the LPA1 receptor exhibit emotional dysregulation and cognitive alterations in hippocampus-dependent tasks. Moreover, the loss of this receptor results in a phenotype of low resilience with dysfunctional coping in res…

0301 basic medicineElevated plus mazemedicine.medical_specialtyMALDI-TOFF mass spectrometry:Medicina Básica [Ciências Médicas]BiologyHippocampal formationemotionslcsh:RC321-57103 medical and health scienceschemistry.chemical_compoundstressCellular and Molecular Neuroscience0302 clinical medicineInternal medicineLysophosphatidic acidmedicineReceptorlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryMolecular BiologyScience & TechnologyEmotional dysregulationmedicine.diseasePhenotypeLPA species030104 developmental biologyEndocrinologychemistryMood disordersCiências Médicas::Medicina Básicalipids (amino acids peptides and proteins)LPA receptor 1LPA1 receptorbiological phenomena cell phenomena and immunity030217 neurology & neurosurgeryIntracellularLPA(1) receptorFrontiers in Molecular Neuroscience
researchProduct

Enhancement in Phospholipase D Activity as a New Proposed Molecular Mechanism of Haloperidol-Induced Neurotoxicity

2020

Membrane phospholipase D (PLD) is associated with numerous neuronal functions, such as axonal growth, synaptogenesis, formation of secretory vesicles, neurodegeneration, and apoptosis. PLD acts mainly on phosphatidylcholine, from which phosphatidic acid (PA) and choline are formed. In turn, PA is a key element of the PLD-dependent secondary messenger system. Changes in PLD activity are associated with the mechanism of action of olanzapine, an atypical antipsychotic. The aim of the present study was to assess the effect of short-term administration of the first-generation antipsychotic drugs haloperidol, chlorpromazine, and fluphenazine on membrane PLD activity in the rat brain. Animals were…

0301 basic medicineFluphenazineolanzapinePhospholipasePharmacologyCatalysishaloperidollcsh:ChemistryInorganic Chemistry03 medical and health scienceschemistry.chemical_compound0302 clinical medicineneurotoxicityHaloperidolmedicineAnimalsphospholipase DPhospholipase D activityPhysical and Theoretical ChemistryChlorpromazinechlorpromazinelcsh:QH301-705.5Molecular BiologySpectroscopy030102 biochemistry & molecular biologyPhospholipase DCommunicationOrganic ChemistryGeneral MedicinePhosphatidic acidfluphenazineRatsComputer Science ApplicationsEnzyme Activationenzymes and coenzymes (carbohydrates)lcsh:Biology (General)lcsh:QD1-999chemistryMechanism of actionneuroprotectionlipids (amino acids peptides and proteins)medicine.symptom030217 neurology & neurosurgerymedicine.drugInternational Journal of Molecular Sciences
researchProduct

Molecular cause and functional impact of altered synaptic lipid signaling due to a prg‐1 gene SNP

2015

Loss of plasticity-related gene 1 (PRG-1), which regulates synaptic phospholipid signaling, leads to hyperexcitability via increased glutamate release altering excitation/inhibition (E/I) balance in cortical networks. A recently reported SNP in prg-1 (R345T/ mutPRG-1) affects ~5 million European and US citizens in a monoallelic variant. Our studies show that this mutation leads to a loss-of-PRG-1 function at the synapse due to its inability to control lysophosphatidic acid (LPA) levels via a cellular uptake mechanism which appears to depend on proper glycosylation altered by this SNP. PRG-1 +/ mice, which are animal correlates of human PRG-1 +/mut carriers, showed an altered cortical networ…

0301 basic medicineGeneticseducation.field_of_studySensory gatingPopulationGlutamate receptorLipid signalingBiologyCell biologySynapse03 medical and health scienceschemistry.chemical_compound030104 developmental biology0302 clinical medicinemedicine.anatomical_structurechemistryLysophosphatidic acidmedicineMolecular MedicineSignal transductionAutotaxineducation030217 neurology & neurosurgeryEMBO Molecular Medicine
researchProduct

LPA1, LPA2, LPA4, and LPA6receptor expression during mouse brain development

2019

Background:LPA is a small bioactive phospholipid that acts as an extracellularsignaling molecule and is involved in cellular processes, including cell prolifera-tion, migration, and differentiation. LPA acts by binding and activating at least sixknown G protein–coupled receptors: LPA1–6. In recent years, LPA has beensuggested to play an important role both in normal neuronal development andunder pathological conditions in the nervous system. Results:We show the expression pattern of LPA receptors during mouse braindevelopment by using qRT-PCR, in situ hybridization, and immunocytochemistry.Only LPA1,LPA2,LPA4,and LPA6 mRNA transcripts were detected throughoutdevelopment stages from embryoni…

0301 basic medicineNervous systemMessenger RNANeocortexReceptor expressionIn situ hybridizationHippocampal formationBiologyCell biology03 medical and health scienceschemistry.chemical_compound030104 developmental biology0302 clinical medicinemedicine.anatomical_structurechemistryLysophosphatidic acidmedicinelipids (amino acids peptides and proteins)Receptor030217 neurology & neurosurgeryDevelopmental BiologyDevelopmental Dynamics
researchProduct

Precise Somatotopic Thalamocortical Axon Guidance Depends on LPA-Mediated PRG-2/Radixin Signaling

2016

Summary Precise connection of thalamic barreloids with their corresponding cortical barrels is critical for processing of vibrissal sensory information. Here, we show that PRG-2, a phospholipid-interacting molecule, is important for thalamocortical axon guidance. Developing thalamocortical fibers both in PRG-2 full knockout (KO) and in thalamus-specific KO mice prematurely entered the cortical plate, eventually innervating non-corresponding barrels. This misrouting relied on lost axonal sensitivity toward lysophosphatidic acid (LPA), which failed to repel PRG-2-deficient thalamocortical fibers. PRG-2 electroporation in the PRG-2−/− thalamus restored the aberrant cortical innervation. We ide…

0301 basic medicineNeuroscience(all)ThalamusGrowth ConesSensory systemBiologyArticle03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineDiscrimination PsychologicalThalamusRadixinLysophosphatidic acidNeural PathwaysmedicineAnimalsPhosphorylationGrowth coneCerebral CortexMice KnockoutGeneral NeuroscienceMembrane ProteinsAxon GuidanceCytoskeletal Proteins030104 developmental biologymedicine.anatomical_structurechemistryCerebral cortexAxon guidanceSignal transductionLysophospholipidsNeuroscience030217 neurology & neurosurgerySignal TransductionNeuron
researchProduct

Altered synaptic phospholipid signaling in PRG-1 deficient mice induces exploratory behavior and motor hyperactivity resembling psychiatric disorders.

2017

Abstract Plasticity related gene 1 (PRG-1) is a neuron specific membrane protein located at the postsynaptic density of glutamatergic synapses. PRG-1 modulates signaling pathways of phosphorylated lipid substrates such as lysophosphatidic acid (LPA). Deletion of PRG-1 increases presynaptic glutamate release probability leading to neuronal over-excitation. However, due to its cortical expression, PRG-1 deficiency leading to increased glutamatergic transmission is supposed to also affect motor pathways. We therefore analyzed the effects of PRG-1 function on exploratory and motor behavior using homozygous PRG-1 knockout (PRG-1−/−) mice and PRG-1/LPA2–receptor double knockout (PRG-1−/−/LPA2−/−)…

0301 basic medicinemedicine.medical_specialtyGlutamic AcidNerve Tissue ProteinsBiologyHyperkinesisHippocampusOpen field03 medical and health sciencesBehavioral NeuroscienceGlutamatergicchemistry.chemical_compoundMice0302 clinical medicineLysophosphatidic acidmedicineAnimalsReceptors Lysophosphatidic AcidPsychiatryMice KnockoutNeuronsMental DisordersGlutamate receptorSomatosensory CortexMice Inbred C57BL030104 developmental biologymedicine.anatomical_structurechemistrySynapsesExploratory BehaviorGABAergicCalmodulin-Binding ProteinsFemaleNeuronSignal transductionLysophospholipidsPostsynaptic density030217 neurology & neurosurgerySignal TransductionBehavioural brain research
researchProduct